APPLI-COURS CORRIGE: La richesse des français -

dispersion et concentration -

On considère le PATRIMOINE BRUT MOYEN (**PBM**) comme la définition principale de la richesse. L'INSEE l'évalue en DECILES, en €uro. Il est la somme de 3 composantes principales : *patrimoine financier*, *patrimoine immobilier*, *et patrimoine résiduel*.

On dispose dans le **tableau 1** ci-dessous de la distribution du PATRIMOINE GLOBAL selon les déciles de 1 à 10, pour 2021.

On souhaite analyser cette distribution en deux étapes :

- 1- Le PBM: Analyse de la tendance centrale, de la dispersion, de la forme Tableau 1 -
- 2- Le CAPITAL FINANCIER : Analyse de la concentration, et diagnostic sur les inégalités de REPARTITION DU PATRIMOINE FINANCIER. On dispose pour cela, dans le **tableau 2** cidessous, de la *masse du patrimoine financier*, et de sa répartition entre les tranches de patrimoine.

La relation entre les deux tableaux peut être illustrée ainsi :

Tableau 1 : Données brutes de l'INSEE

Com	Composition du patrimoine brut par décile en 2021						
, 00	Tranche de patrimoine brut	Patrimoine brut moyen (en euros)					
	< 1 ^{er} décile	1 900					
	Entre les 1 ^{er} et 2 ^e déciles	8 300					
	Entre les 2 ^e et 3 ^e déciles	21 500					
	Entre les 3 ^e et 4 ^e déciles	64 300					
	Entre les 4 ^e et 5 ^e déciles	142 100					
	Entre les 5 ^e et 6 ^e déciles	211 500					
	Entre les 6 ^e et 7 ^e déciles	285 900					
	Entre les 7 ^e et 8 ^e déciles	383 300					
	Entre les 8 ^e et 9 ^e déciles	559 800					
,	> 9 ^e décile	1 487 700					

Tableau 2 : Données brutes de l'INSEE PATRIMOINE FINANCIER **(données arrondies par Nous)**

Tranche de patrimoine brut	Patrimoine financier
< 1 ^{er} décile	600
Entre les 1 ^{er} et 2 ^e déciles	2800
Entre les 2 ^e et 3 ^e déciles	9000
Entre les 3 ^e et 4 ^e déciles	28000
Entre les 4 ^e et 5 ^e déciles	29000
Entre les 5 ^e et 6 ^e déciles	30000
Entre les 6 ^e et 7 ^e déciles	42000
Entre les 7 ^e et 8 ^e déciles	63000
Entre les 8 ^e et 9 ^e déciles	113000
> 9 ^e décile	350000

1- ANALYSE de la tendance centrale, de la dispersion, de la forme - suivre l'ordre des questions – Répondre en indiquant systématiquement les formules algébriques utilisées pour les calculs.

<u>IMPORTANT</u>: Pour le calcul de la MOYENNE (Q3) et de la DISPERSION (Q6) il vous est recommandé, pour alléger les calculs, de *réaliser le changement de variable*: C'xi = Cxi/1000

Q1: en choisissant la valeurs **xMIN** = **0**, reconstituer à partir du tableau 1 , les classes de distribution et leurs fréquences (simples et cumulées).

La variable étant continue, et la série étant donnée en *déciles*, ou tranches de 10%, de 1 à 10, on déduit du tableau les bornes de classe et les *fréquences simples suivantes*, que l'on cumule immédiatement

Tranche de patrimoine brut	xi-	xi+	fi%	F(xi+)	F(xi-)
< 1 ^{er} décile	0	1900	10%	10%	0%
Entre les 1 ^{er} et 2 ^e déciles	1900	8300	10%	20%	10%
Entre les 2 ^e et 3 ^e déciles	8300	21500	10%	30%	20%
Entre les 3 ^e et 4 ^e déciles	21500	64300	10%	40%	30%
Entre les 4 ^e et 5 ^e déciles	64300	142100	10%	50%	40%
Entre les 5 ^e et 6 ^e déciles	142100	211500	10%	60%	50%
Entre les 6 ^e et 7 ^e déciles	211500	285900	10%	70%	60%
Entre les 7 ^e et 8 ^e déciles	285900	383300	10%	80%	70%
Entre les 8 ^e et 9 ^e déciles	383300	559800	10%	90%	80%
> 9 ^e décile	559800	1487700	10%	100%	90%
			100%		100%

On lit que l'information de gauche est bien traduite par le tableau de distribution reconstitué. Xmin étant choisi et égal à 0, chaque décile contient 10% de la population.

Q2 : Calculer le MODE de la distribution et dites dans quel diagramme il devrait être représenté.

xMo = xi / (fi/ai)% MAX c'est-à-dire pour une

variable continue le CENTRE DE LA CLASSE MODALE [xi- ; xi+[

Pour la lisibilité des résultats, on calcule ici (fi%/ai)×10000 (par exemple). On lit alors dans le tableau (fi%/ai)×10000 MAX = 0,526

xM0 = [0; 1900] est la classe modale, et dont le centre de classe est

$$c(xi) = (xi^{+}) + (xi^{-})$$

 $c(xi) = (xi^{+}) + (xi^{-})$

_					
xi-	xi+	fi%	ai	(fi%/ai)*10000	Схі
0	1900	10%	1900	0,526	950
1900	8300	10%	6400	0,156	5100
8300	21500	10%	13200	0,076	14900
21500	64300	10%	42800	0,023	42900
64300	142100	10%	77800	0,013	103200
142100	211500	10%	69400	0,014	176800
211500	285900	10%	74400	0,013	248700
285900	383300	10%	97400	0,010	334600
383300	559800	10%	176500	0,006	471550
559800	1487700	10%	927900	0,001	1023750
		100%	1 487 700		

Le Mode doit être représenté dans L'histogramme. Celui-ci étant d'une structure complexe du fait de la disproportion des amplitudes, et peu lisible, ne sera pas réalisé.

Q3: Calculer la valeur du patrimoine moyen

$$\overline{x} = \sum_{i=1}^n fi \cdot c_{xi}$$

On préférera ici réduire la taille des Cxi en opérant le changement de variable (ou transformation linéaire)

$$C'xi = Cxi / 1000$$

Pour calculer

$$\overline{x'} = \sum_{i=1}^n fi \cdot \underline{c'_{xi}}$$

xi-	xi+	fi%	Cxi	C'xi	fi.C'xi
0	1900	10%	950	0,95	0,095
1900	8300	10%	5100	5,1	0,51
8300	21500	10%	14900	14,9	1,49
21500	64300	10%	42900	42,9	4,29
64300	142100	10%	103200	103,2	10,32
142100	211500	10%	176800	176,8	17,68
211500	285900	10%	248700	248,7	24,87
285900	383300	10%	334600	334,6	33,46
383300	559800	10%	471550	471,55	47,155
559800	1487700	10%	1023750	1023,75	102,375
		100%			242,25

Soit alors
$$x' = \sum_{i=1}^{n} fi \cdot \frac{c_{xi}}{c_{xi}} = 242,25 \text{ et donc}$$
 $x = \sum_{i=1}^{n} fi \cdot \frac{c_{xi}}{c_{xi}} = 242,25 \times 1000 = 242250$

Q4 : Déterminer le niveau du patrimoine sous lequel se trouvent 50% des patrimoines

Pour les mêmes raisons que l'histogramme, on n'adoptera pas ici la méthode de la courbe cumulative pour répondre à la question.

On préférera la méthode du tableau, et donc les fréquences (Fxi+) et F(xi-).

Le niveau du patrimoine sous lequel se trouvent 50% des patrimoines est la MEDIANE ou xMé. Sa définition est :

$$xM\acute{e} = x_i^- + (a_i \frac{F(xM\acute{e}) - F(x_i^-)}{F(x_i^+) - F(x_i^-)})$$

On recherche habituellement les VALEURS ENCADRANTES dans le tableau :

xi-	xi+	fi%	F(xi+)	F(xi-)
0	1900	10%	10%	0%
1900	8300	10%	20%	10%
8300	21500	10%	30%	20%
21500	64300	10%	40%	30%
64300	142100	10%	50%	40%
142100	211500	10%	60%	50%
211500	285900	10%	70%	60%
285900	383300	10%	80%	70%
383300	559800	10%	90%	80%
559800	1487700	10%	100%	90%
		100%		100%

On constate qu'elles ne sont pas nécessaires. F(xMé) = F(xi+) = 50 % existe sans interpolation. On en déduit immédiatement la valeur de xMé = xi+ = 142100 €

Q5: déterminer la valeur du patrimoine au-delà duquel sont situés 25% des patrimoines les plus élevés

La valeur du patrimoine au-delà duquel sont situés 25% des patrimoines les plus élevés, est donné par le troisième quartile

x(Q3) dont la fréquence est F(xQ3) = 75%. Au-delà se situent 25% de la population.

$$x^{Q3} = x_i^- + (a_i \frac{F(x^{Q3}) - F(x_i^-)}{F(x_i^+) - F(x_i^-)})$$

On recherche les VALEURS ENCADRANTES dans le tableau :

xi-	xi+	fi%	F(xi+)	F(xi-)
0	1900	10%	10%	0%
1900	8300	10%	20%	10%
8300	21500	10%	30%	20%
21500	64300	10%	40%	30%
64300	142100	10%	50%	40%
142100	211500	10%	60%	50%
211500	285900	10%	70%	60%
285900 x(383300	10%	80% F((Q3) 70%
383300	559800	10%	90%	80%
559800	1487700	10%	100%	90%
		100%		100%

L'application de la formule est alors :

$$xQ3 = 285900 + ((383300 - 285900)×((75-70)/(80-70)) = 334600 €$$

Q6 : Calculer la variance de la distribution et en déduire l'écart type et le coefficient de variation

On calcule d'abord la variance de la variable réduite : C'xi

En lui appliquant le théorème de Huygens-Konig

$$\sigma^2 = \sum_{i=1}^n (fi.(Cxi^2) - (\overline{x}')^2)$$

xi-	xi+	fi%	C'xi	fi.C'xi	C'xi²	fi.C'xi²
0	1900	10%	0,95	0,095	0,9025	0,09025
1900	8300	10%	5,1	0,51	26,01	5,202
8300	21500	10%	14,9	1,49	222,01	66,603
21500	64300	10%	42,9	4,29	1840,41	736,164
64300	142100	10%	103,2	10,32	10650,24	5325,12
142100	211500	10%	176,8	17,68	31258,24	18754,944
211500	285900	10%	248,7	24,87	61851,69	43296,183
285900	383300	10%	334,6	33,46	111957,16	89565,728
383300	559800	10%	471,55	47,155	222359,403	200123,462
559800	1487700	10%	1023,75	102,375	1048064,06	1048064,06
		100%		242,25		1405937,56

$$\sigma^{2}$$
' = 1405937,56 - (242,25)² = 90140,37

D'où l'on déduit $\sigma' = (90140,37)^{1/2} = 300,23$

Et
$$CV' = \frac{\sigma}{x'} = 300,23/242,25 = 1,239 \text{ soit } 124\%$$

La transformation linéaire n'affecte pas le CV (ou CV' = CV), puisque Les résultats de la variable d'origine

$$\sigma^2 = 1000^2 \times \sigma^2' = 100000 \times 90140,37 = 9014037000$$

Et donc
$$\sigma = \sqrt{\sigma^2} = 300233,86$$
 $et CV = \frac{\sigma}{\bar{x}} = \frac{300233,86}{242250} = 1,23935$ soit 124%

Il n'est donc pas nécessaire après un changement de variable, de calculer la variance et l'écart type d'origine pour obtenir le coefficient de variation. Le CV de la variable réduite tient lieu de résultat.

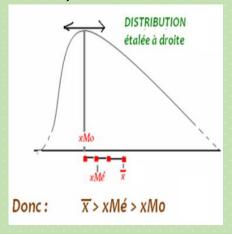
Q7: Par la relation de Pearson, déduire la forme de la distribution, et tirer une conclusion en une ou deux phrases.

Les résultat ci-dessus ont été:

$$xM0 = Cx1 = 950.$$

$$\overline{x} = \sum_{i=1}^{n} fi \cdot \frac{c_{xi}}{c_{xi}} = 242250$$

Donc xBar > xMé > xM0 Selon la relation de Pearson, nous sommes donc dans le cas suivant :



La conclusion est : la distribution du patrimoine global montre une dispersion autour de la moyenne où dominent les tranches de patrimoine inférieures à la moyenne. Ce que confirme le 3eme quartile, qui montre que seuls 25% des patrimoines sont situés audelà de 334600€.

(en termes vulgaires : « beaucoup de petits patrimoines mais peu de gros patrimoines ») .

2- ANALYSE de la concentration du capital financier et diagrammes représentatifs (tableau 2) -suivre l'ordre des questions – Répondre en indiquant systématiquement les formules algébriques utilisées pour les calculs.

Q1 : Calculer la part dans la masse du capital financier, de chaque classe de patrimoine global (en décimales – vous retiendrez 4 décimales) et en %.

On appelle part dans la masse du capital financier le rapport **Si/MS**, avec Si = montant du capital financier détenu par chaque classe de patrimoine ; et MS = le capital financier total entrant dans le patrimoine global = $\sum_{i=1}^{10} S_i$. Ces deux grandeur permettent de déduire **gi = Si/MS** (décimales) et (gi%=(Si/MS)×100%). Soit :

xi-	xi+	Si	fi%	gi
0	1900	600	0,1	0,0009
1900	8300	2800	0,1	0,0042
8300	21500	9000	0,1	0,0135
21500	64300	28000	0,1	0,0420
64300	142100	29000	0,1	0,0435
142100	211500	30000	0,1	0,0450
211500	285900	42000	0,1	0,0629
285900	383300	63000	0,1	0,0944
383300	559800	113000	0,1	0,1693
559800	1487700	350000	0,1	0,5244
		667400		1

Q2 : En déduire la valeur de **U**, l'aire hors concentration L'aire hors concentration U est donnée par :

$$v = \sum \left[\frac{fi \ (G_{i\cdot} + G_{i\cdot})}{2} \right]$$
 il importe donc

Dans un premier temps, de calculer les gi cumulés, soit Gi+ (zig zag) et Gi- (coller),

Puis dans un second temps de réaliser le demi produit fi((Gi+) + (Gi-))

xi-	xi+	Si	fi%	gi	gi%	Gi+	Gi-	fi*(Gi+ + Gi-)/2)
0	1900	600	0,1	0,0009	0,1%	0,0009	0	0,00004
1900	8300	2800	0,1	0,0042	0,4%	0,0051	0,0009	0,00030
8300	21500	9000	0,1	0,0135	1,3%	0,0186	0,0051	0,00118
21500	64300	28000	0,1	0,0420	4,2%	0,0605	0,0186	0,00396
64300	142100	29000	0,1	0,0435	4,3%	0,1040	0,0605	0,00823
142100	211500	30000	0,1	0,0450	4,5%	0,1489	0,1040	0,01265
211500	285900	42000	0,1	0,0629	6,3%	0,2119	0,1489	0,01804
285900	383300	63000	0,1	0,0944	9,4%	0,3063	0,2119	0,02591
383300	559800	113000	0,1	0,1693	16,9%	0,4756	0,3063	0,03909
559800	1487700	350000	0,1	0,5244	52,4%	1,0000	0,4756	0,07378
		667400		1	100,0%		1,0000	0,05000

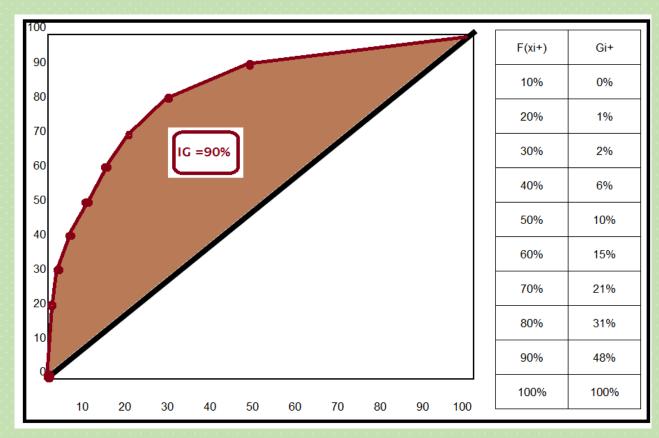
Il ressort que U = 0,05

Q3: Calculer l'INDICE DE GINI

$$IG = 2 \times (0,5 - U)$$

$$= 2 (0.5 - 0.05) = 2 \times 0.45 = 0.9$$
 soit 90%

Q4 : Réaliser la courbe de Lorenz Gini



Q5 : A l'aide de vos réponses à Q3 et Q4 : commentez les inégalités de répartition du capital financier, telles que vous les constatez (2 phrases maximum).

Les inégalités de répartition du capital financier sont extrêmement élevées. L'indice de Gini étant proche de 100%, soit 90%. La courbe de Gini permet de constater que 10% des patrimoines détiennent 52% du capital financier.

Q6 : De quel(s) autre(s) indicateur(s) complémentaire(s) disposez vous pour illustrer le phénomène constaté ?

On dispose principalement de iV, l'intervalle de variation, ou écart Médiane-Médiale.

Q7 : Calculer l'intervalle de variation. Commentez le résultat.

L'intervalle de variation est le quotient

ΔM = xMl – xMé

e (l'étendue : xMax – xMin)

On connaît xMé = 142100

e = 1487700 - 0 = 1487700

xML doit être interpolée. Soit sa définition :

xML = xi / G(xML) = 50%

On lit dans le tableau ci-dessus les valeurs encadrantes

xi-	xi+	Si	fi%	gi	gi%	Gi+	Gi-	fi*(Gi+ + Gi-)/2)
0	1900	600	0,1	0,0009	0,1%	0,0009	0	0,00004
1900	8300	2800	0,1	0,0042	0,4%	0,0051	0,0009	0,00030
8300	21500	9000	0,1	0,0135	1,3%	0,0186	0,0051	0,00118
21500	64300	28000	0,1	0,0420	4,2%	0,0605	0,0186	0,00396
64300	142100	29000	0,1	0,0435	4,3%	0,1040	0,0605	0,00823
142100	211500	30000	0,1	0,0450	4,5%	0,1489	0,1040	0,01265
211500	285900	42000	0,1	0,0629	6,3%	0,2119	0,1489	0,01804
285900	383300	63000	0,1	0,0944	9,4%	0,3063	0,2119	0,02591
383300	559800	113000	0,1	0,1693	16,9%	0,4756	0.3063	0,03909
559800 X	ML (487700)	350000	0,1	0,5244	52,4%	1,0000 G(xML) 0.4756	0,07378
		667400		1	100,0%		1,0000	0,05000

xML = 559800 + [(1487700-559800) ((0,5 - 0,4756)/(1-0,476) = 603007,55 D'où

iV = (603007,55 - 142100)/ *1487700 = 0,309* soit 31% de l'étendue

Commentaire de iV:

L'écart absolu entre les deux médianes : celle du patrimoine global, et celle du patrimoine financier, est de 460907,55 €.

Si xML et xMé étaient égales, l'écart serait nul. Alors 50% des patrimoines bénéficieraient de 50% du capital financier. On serait sur la droite d'équirépartition ou d'égalité parfaite. Or, la déformation par rapport à cette égalité représente le tiers de l'étendue. Donc une des moitié empiète sur l'autre de 30%.

Ce qui soutient le résultat de IG et de la courbe de Gini, d'une concentration très forte du patrimoine financier dans la classe la plus élevée.

